Sensitivity of soft tissue sarcoma cell lines to chemotherapeutic agents: identification of ecteinascidin-743 as a potent cytotoxic agent.
نویسندگان
چکیده
The cytotoxic effects of ecteinascidin-743(ET-743), a novel marine natural product, were evaluated and compared with that of clinically used anticancer agents methotrexate, doxorubicin, etoposide, and paclitaxel in eight human soft tissue sarcoma (STS) cell lines. HT-1080, a fibrosarcoma cell line, and HS-42, a malignant mesodermal cell line, were the most sensitive of the cell lines to methotrexate, doxorubicin, etoposide, and paclitaxel. Other cell lines (IC50s) varied considerably and were more resistant to these agents. ET-743 was more potent than any of these agents, with IC50s in the pM range in all of the cell lines. Cytotoxicity of ET-743 was dose- and time-related (4-72 h exposure). Cytotoxic concentrations of ET-743 produced a S/G2 block in all of the cell lines tested. Three colon adenocarcinoma cell lines, HCT-8, HT-29, and HCT-116, and one breast cancer cell line, MCF-7, were 1-2 logs less sensitive to ET-743 than the STS cell lines. Cell lines were also characterized as to expression of oncogenes and tumor suppressor genes to attempt to correlate sensitivity of these cell lines to ET-743 and other chemotherapeutic agents. All of the cell lines except M8805, a malignant fibrous histiocytoma cell line, had mutations in p53 and/or overexpressed the MDM2 protein. Only HS-18, a liposarcoma cell line, lacked expression of the retinoblastoma protein. None of the cell lines had detectable expression of P-glycoprotein as measured by immunohistochemistry. ET-743 is an extremely potent cytotoxic agent against human STS cell lines and is being evaluated as an antitumor agent in this disease.
منابع مشابه
Sequence-dependent enhancement of cytotoxicity produced by ecteinascidin 743 (ET-743) with doxorubicin or paclitaxel in soft tissue sarcoma cells.
Ecteinascidin 743 (ET-743) is a potent antitumor agent from the Caribbean tunicate Ecteinascidin turbinata and is presently in clinical trials for human cancers. To better understand how ET-743 might be used clinically, the present study used SRB assays to examine the cytotoxicity resulting from combining ET-743 with three other antineoplastic agents: doxorubicin (DXR), trimetrexate, and paclit...
متن کاملEffectiveness of Ecteinascidin-743 against drug-sensitive and -resistant bone tumor cells.
PURPOSE The identification of new drugs is strongly needed for bone tumors.Ecteinascidin-743 (ET-743), a highly promising antitumor agent isolated from the marine tunicate Ecteinascidia turbinata, is currently under Phase II clinical investigation in Europe and the United States for treatment of soft tissue sarcoma. In this study, we analyzed the preclinical effectiveness of this drug in osteos...
متن کاملTranscriptional signature of Ecteinascidin 743 (Yondelis, Trabectedin) in human sarcoma cells explanted from chemo-naive patients.
Ecteinascidin 743 (ET-743; Yondelis, Trabectedin) is a marine anticancer agent that induces long-lasting objective remissions and tumor control in a subset of patients with pretreated/resistant soft-tissue sarcoma. Drug-induced tumor control is achievable in 22% of such patients, but there is no clear indication of the molecular features correlated with clinical sensitivity/resistance to ET-743...
متن کاملRole of trabectedin in the treatment of soft tissue sarcoma
Interest in marine natural products has allowed the discovery of new drugs and trabectedin (ET-743, Yondelis), derived from the marine tunicate Ecteinascidia turbinata, was approved for clinical use in 2007. It binds to the DNA minor groove leading to interferences with the intracellular transcription pathways and DNA-repair proteins. In vitro antitumor activity was demonstrated against various...
متن کاملOvercoming multidrug drug resistance in P-glycoprotein/MDR1-overexpressing cell lines by ecteinascidin 743.
Ecteinascidin 743 (Et-743) is a novel anticancer agent forming covalent guanine adducts at specific sites in the DNA minor groove. Et-743 has a unique mechanism of action because it kills cancer cells by poisoning transcription-coupled nucleotide excision repair. Recent studies suggested a complex relationship between P-glycoprotein (P-gp)/MDR1 and Et-743. On one hand, Et-743 was reported to do...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 7 9 شماره
صفحات -
تاریخ انتشار 2001